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Starting from the Burton-Cabrera-Frank model in the presence of electromigration, we derive a nonlinear
continuum version of step dynamics, where steps undergo a bunching instability. The obtained equation for the
steps density is a mixture of the Korteweg–de Vries equation, which leads to solitons, and the Burger equation,
which exhibits spatiotemporal chaos. For a small dispersive term, spatiotemporal chaotic pulses prevail. On
increasing this term, we observe gradually a transition towards regular pulses.@S1063-651X~96!51705-8#

PACS number~s!: 81.10.Aj, 05.70.Fh, 81.30.Fb, 68.70.1w

One of the most common causes for morphology alter-
ation of an initially vicinal surface is due to step bunching.
Step bunching can occur in a variety of situations. For ex-
ample, during heteroepitaxial growth, the strain energy can
cause a step-bunching instability, which may be either of
thermodynamical origin~the Asaro-Tiller-Grinfeld effect
@1–3#!, or may result from a kinetic instability@4#. Similarly,
during homoepitaxial growth the impurity pinning on the
terrace can lead to step bunching@5,6#. A more familiar ex-
ample of the step bunching instability arises during sublima-
tion provided that an asymmetry of the sticking between the
upper and lower terraces at the steps exists@7# ~the
Schwoebel effect!. On the experimental level, perhaps the
most controllable situation corresponds to the case of subli-
mating silicon~111! by a dc heating current. In such a situ-
ation, it has been reported by several groups@8–12# that the
surface morphology depends on the direction of the heating
current. More precisely, when the current direction coincides
with the ascendent one, step bunches appear in the tempera-
ture range ;130021500 K, disappear in the range
;150021600 K and again reappear above 1600 K. Revers-
ing the current direction leads to a complementary picture
~stable intervals become unstable, and vice versa!. A step
forward was made by Stoyanov@13#, who evoked the elec-
tromigration effect on adatoms. This explains nicely the first
transition~from stable to unstable!, but it gives no hint to the
reappearence of step bunches at higher temperature. We have
recently shown@14# that the inclusion of advacancies in the
step flow model reproduces the high temperature behavior of
vicinal surfaces. Another alternative based on the assumption
of incomplete melting was suggested which seems to ac-
count for the low temperature behavior@15#.

All these studies were linear. The main outcome of a lin-
ear theory is the determination of the onset of instability, and
the range of those perturbations which are likely to grow
first. If the new structure is to be determined, and/or the long
time evolution to be ascertained, then a nonlinear analysis is
necessary. The aim of this Rapid Communication is to deal
with the nonlinear behavior above the step-bunching insta-
bility. For the sake of simplicity, and without loss of gener-
ality, we shall consider the case of relatively low tempera-
tures where advacancies can be neglected, and focus on the
case of electromigration-induced step bunching, which
seems to us as a canonical experimental example. It must be

kept in mind, however, that the type of equation we shall
derive is generic, and it should therefore apply to the above
mentioned situations as well.

The step flow model incorporates adatom diffusion, elec-
tromigration, evaporation, and sticking at the steps. Let
c(r ,t) denote the adatom areal density. Mass conservation
imposes
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wheret is the desorption time,D the diffusion constant,F
the electromigration force, andkBT the thermal excitation
energy. At each stepx5xm(t) (m labels themth step! the
kinetic equation takes the form
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wheren6 is a kinetic coefficient~having the dimension of a
velocity!. The1 sign refers to the lower side, and – to the
upper one. Our convention is that the descendent direction is
along the positivex axis. The quantityE designates the elas-
tic interaction. For homoepitaxy, and if only first neighbors
interaction is taken into account,E5A@(xm2xm211 l 0)
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E are the Poisson ratio, and Young modulus, andf a force.
The quantityA measures the strength of the elastic interac-
tion @16# and has a dimension of an energy multiplied by a
length. From a dimensional analysisf;Ea2 wherea is an
atomic length, so thatA;Ea4. Typically E;1010 Pa,
a;~1–3!310210 m, and thenA;(10229210230) J m. This
is consistent with the experimentally measured value
;10230 J m for silicon@17#.

Finally, if J65D(]c/]x2Fc/kBT)x506 denotes the
mass current across the step, the normal velocity is given by

vn5V~J12J2!. ~3!

The set of equations~1!–~3! completely describes step dy-
namics during sublimation. Before proceeding to the analy-
sis, some remarks are in order. We disregard step meander-
ing which will be the subject of a future work. We shall
make use of the quasisteady approximation, which is valid
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for all practical purposes. The diffusion field on a given ter-
race can easily be found to be given byc5acosh(x/a0)
1bsinh(x/a0), a05Axs2211/4j2, xs5ADt, j5kBT/F ~it
has a dimension of a length!, and wherea andb are integra-

tion factors which are easily determined by making use of
Eqs.~2!. Finally use of the continuity equation~3! provides
us with the step position evolution as a function of neighbor-
ing steps
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where d65D/n6 is the Schwoebel length,Dxm11

5xm112xm , etc., D(x)5@11d1d2 /xs
21(d12d2)/
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( i50,1,2), andA56V2ceqA/kBT. Equation~4! represents,
in principle, an infinite set of equations. Rather than using a
microscopic picture of step dynamics~by treating each step
separately!, our aim here is to use a ‘‘coarse-grained’’ image
of step bunches by resorting to a contiuum limit. For that
purpose we assume that the interstep distance is much
smaller than the diffusion lengthxs . This holds, in particu-
lar, in the case of Si~111! for moderate temperatures. We
shall simplify the analysis further by assuming
d15d25d. That is, we neglect the asymmetry due to the
Schwoebel barrier. The asymmetry is caused by the elec-
tromigration force. It must be emphasized however that a
finite sticking rate (d finite! is necessary in order to account
for linear instability of the vicinal surface. Equation~4! is
highly nonlinear. We shall truncate it to some order. For
such an operation to be legitimate we assume that the growth
rate of the instability is small enough~see below!. This is
satisfied by concentrating on the situation close to the insta-
bility threshold. Our strategy then is~i! to expand Eq.~4! in
powers ofDxm and~ii ! to treat the subscriptm as a continu-
ous variable. Our treatment is valid for long wavelength
modulations. Let us first extract from Eq.~4! only the linear
part and letmh[x and W(x)5xm112xm . Equation ~4!
yields
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whereb25@1/(2jd)2A/(Vceqxs
2l 0
3)#. The quantityl 0 is the

zeroth order interstep distance. Note that we have truncated
the expansion at the fourth derivative. In a multiscale analy-

sis developed below, it will be recognized that this is suffi-
cient. There are two types of terms. The first type concerns
the odd derivatives~which would not affect the stability—
these are propagative terms!—and the second the even ones.
~i! Wxx may be destabilizing or stabilizing according to
whether 1/2j is smaller or larger thandA/(Vceqxs

2l 0
3). In

other words, electromigration~recall that 1/j;F) destabi-
lizes the vicinal surface~only if F.0), while elasticity al-
ways stabilizes it.~ii ! Wxxxx is always stabilizing forj.0. It
is composed of two contributions: one coming from elec-
tromigration and the second stems from elasticity. For very
short interstep distances the latter dominates. Note that the
first derivative in Eq.~5! can always be absorbed inWt by
means of a Galilean transformationx→x2v0t ~where
v05Vceq /t is nothing but the step velocity in the original
vicinal train for a unit interstep distance—recall thatx is
scaled byh), and we shall omit it in the following.

Our treatment is expected to be valid in the long wave-
length limit. As we shall see immediately, this situation is
encountered close to the instability threshold. The critical
condition for the onset of instability is obtained for
1/2j5dA/(Vceqxs

2l 0
3). As in other contexts@18#, we intro-

duce a small parametere5122dAj/Vceqxs
2l 0
3 which mea-

sures the distance from the threshold. In Fourier space
(W;eiqx1vt), we obtain from Eq.~5! v;eq22q41 iq3.
The real part controls the instability. The fastest growing
mode ~obtained by setting]Rev/]q50) corresponds to a
wave vector which scales asAe ~in real space this corre-
sponds to the long wavelength regime! and the correspond-
ing growth rate scales ase2. The imaginary part ofv would
scale ase3/2 and it dominates in principle~see below!. This
means that in a multiscale analysis we must introduce a short
time associated with propagation, and a long time, the scale
of which determines that of the amplification or the attenua-
tion of the instability. The total timeT5e2t11e3/2t2 , where
t1 is the long time andt2 the short one. Now we go back to
Eq. ~4! and pursue our expansion in a manner very similar to
that developed in@18#. The first nonlinear term that appears
is of the formWWx , and the next oneWx

21WWxx . Both
terms scale asW2. However, the first term contains only one
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derivative, and it is this one which dominates~in the long
wavelength regime we are interested in!. We can then show
using a balance between the nonlinear term and the linear
ones that the amplitude will scale asW;e3/2. Rather than
using the quantityW, we may as well use the steps density
m51/W[m01m1 , wherem0 is the initial density~in the
vicinal regime!. Using Eq. ~4! together with the nonlinear
term, it is a simple matter to show that to leading order the
steps density obeys the following equation:

rT52rXX2rXXXX2brXXX2rrX ~6!

where we have set T5e2D(Vceq)
2l 0
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can be written as a derivative is no surprise; this simply
expresses the conservation of steps. In the absence of the
dispersive termrXXX , Eq. ~6! reduces to the Burger equa-
tion, which is a variant of the Kuramoto-Sivashinsky~KS!
equation@18#. Note, for example, that the KS equation de-
scribes the meandering of an advancing isolated step@18#.
When the destabilizing term (rXX) together with the smooth-
ing one rXXXX are both absent, Eq.~6! reduces to the
Korteweg–de Vries equation~KDV ! @19#. Thus Eq.~6! is a
mixture of the KS and the KDV equations. The KS equation
is known to produce spatiotemporal chaos, while the KDV
one gives rise to solitons.

It is thus an important question to see the consequence of
the competition between solitons and chaos. Equation~6! has
been solved numerically by means of a gear backward dif-
ference, where the derivatives are evaluated in Fourier space.
Equation ~6! possesses the following linear spectrum~we
seek perturbations of the formr;eikX1WT): W5k22k4

1 ibk3. The cutoff wave number~determined byRev50)
is given byqc51. This means that if the extent of the system
L is smaller than 2p/qc[lc then no instability takes place.
In practice the system extent is very large (L..lc) and one
has to solve Eq.~6! for L large. Several simulations have
been performed withL ranging from 10lc to 40lc . Figures

1 and 2 show the spatiotemporal portrait of the step density
for two different values of the dispersive termb. For small
b ~Fig. 1,b50.5) we obtain spatiotemporal chaos. That is to
say the pattern would not have any intrinsic order: the
bunches would be spatially disordered. On increasingb,
there is an emergence of more pronounced pulses with a
tendency towards an ‘‘ordering’’ of the bunches. Figure 2
shows the pattern forb53. It is interesting to note that when
starting from a pattern withb50 ~which is disordered!, and
then switching on tob;1 we observe the birth of a localized
pulse which propagates sideways. The successive passages
of the ‘‘soliton’’ on the initially disordered pattern leaves
behind it a more ordered structure. It seems as if the ‘‘soli-
ton’’ acts as a sort of order selector. This phenomenon bears
a strong resemblance to the situation encountered during di-
rectional growth of a nematic phase at the expense of the
isotropic phase@20#. In that problem there are some circum-
stances where a ‘‘solitarylike’’ wave propagates along the
cellular structure which had initially a rather strong wave-
length dispersion. The successive passages of the ‘‘solitary’’
wave reduces drastically the dispersion. The ‘‘soliton’’ there
is believed to play the role of a wavelength selector.

We are investigating experimental regimes in order to
evaluate the coefficientb, and thus to decide which type of
structure would be expected in a real situation~disorder, or-
der, or a somewhat intermediate situation!. This coefficient
stems from the dispersion of the wave train indicating
thereby that the phase velocity is different from the group
velocity of the bunches. The definition ofb seems to imply
that this coefficient is large since it scales ase21/2. Our treat-
ment is valid as long as the whole coefficientb is not much
larger than unity. A value of the order of 2 or 3 is sufficient
to produce regular pulses. On the one hand, while our regime
is asymptotic, it may be legitimate even fore;0.1—or even
larger—thuse21/2;3. On the other hand, from rough esti-
mates we find that the prefactor ofe21/2 may be as small as
0.1 by using realistic values that enter its expression, and that
thereforeb may easily be rendered as small asb;1 @21# in
a given experiment. We shall give further details in an ex-
tended paper. A precise confrontation with experimental re-
sults would be decisive in order to guide further develop-
ments. We are now studying the evolution of the mean pulse

FIG. 1. The spatiotemporal portrait of the step density for
b50.5. The pattern is chaotic. The vertical coordinate represents
the step density at different times as a function of the coordinate
along the vicinal direction. The time unit is arbitrary.

FIG. 2. The same quantity as in Fig. 1 but forb53. The
bunches are ordered.
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width and the mean pulse-pulse distance as a function of
temperature, and we hope to report along these lines in the
near future.

In summary we have shown from the Burton-Cabrera-
Frank model which incorporates electromigration, that close
to the step-bunching instability threshold the bunch dynam-
ics obey an equation which is a mixture of the Kuramoto-
Sivashinsky ~or Burger! equation and the Korteweg–de
Vries one. The increase of the dispersive term leads to a
transition from disorder to order with more and more pro-
nounced pulses. This analysis has given a qualitative behav-
ior of the evolution of the bunches on a coarse-grained scale.
While we have restricted our attention to the case where
electromigration is the driving source for step bunching, we
believe that the equation we have derived here is generic and

should arise irrespective of the details of the underlying
physics. Among other open questions are~i! how the step
meandering affects bunch dynamics,~ii ! what is the role of
fluctuations, and to what extent ordered pulses~if they are to
arise! can suffer from statistical fluctuations?

Note added in proof.After this work was submitted we
received a paper by M. Sato and M. Uwaha@22#, who dealt
with the problem of step bunching induced by the Schoebel
barrier. Their equation is identical to ours. At the same time
V. Hakim ~private communication! pointed out to us that Eq.
~6! was met, and some of its properties considered, in other
contexts@23,24#.

We are grateful to the Centre Greneblois de Calcul Vec-
toriel for providing us with computing facilities.
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